首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15447篇
  免费   3414篇
  国内免费   4498篇
测绘学   1650篇
大气科学   1726篇
地球物理   4518篇
地质学   10506篇
海洋学   2264篇
天文学   241篇
综合类   1147篇
自然地理   1307篇
  2024年   32篇
  2023年   187篇
  2022年   430篇
  2021年   600篇
  2020年   610篇
  2019年   769篇
  2018年   656篇
  2017年   748篇
  2016年   767篇
  2015年   893篇
  2014年   1097篇
  2013年   1030篇
  2012年   1103篇
  2011年   1191篇
  2010年   1027篇
  2009年   1090篇
  2008年   1045篇
  2007年   1180篇
  2006年   1171篇
  2005年   973篇
  2004年   918篇
  2003年   796篇
  2002年   625篇
  2001年   566篇
  2000年   554篇
  1999年   495篇
  1998年   468篇
  1997年   402篇
  1996年   333篇
  1995年   296篇
  1994年   285篇
  1993年   216篇
  1992年   197篇
  1991年   125篇
  1990年   108篇
  1989年   128篇
  1988年   77篇
  1987年   57篇
  1986年   28篇
  1985年   23篇
  1984年   13篇
  1983年   9篇
  1982年   9篇
  1981年   6篇
  1980年   7篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1972年   2篇
  1954年   13篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
991.
The directional spreading of both the wavenumber and frequency spectra of finite-depth wind generated waves at the asymptotic depth limit are examined. The analysis uses the Wavelet Directional Method, removing the need to assume a form for the dispersion relationship. The paper shows that both the wavenumber and frequency forms are narrowest at the spectral peak and broaden at wavenumbers (frequencies) both above and below the peak. The directional spreading of the wavenumber spectrum is bi-modal above the spectral peak. In contrast, the frequency spectrum is uni-modal. This difference is shown to be the result of energy in the wind direction being displaced from the linear dispersion shell. A full parametric relationship for the directional spreading of the wavenumber spectrum is developed. The analysis clearly shows that typical dispersion relationships are questionable at high frequencies and that such effects can be significant. This result supports greater attention being focussed on the routine recording of wavenumber spectra, rather than frequency spectra.  相似文献   
992.
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
993.
One‐dimensional consolidation analysis of layered soils conventionally entails solving a system of differential equations subject to the flow conditions at the bounding upper and lower surfaces, as well as the continuity conditions at the interface of every pair of contiguous layers. Formidable computational efforts are required to solve the ensuing transcendental equations expressing the matching conditions at the interfaces, using this method. In this paper, the jump discontinuities in the flow parameters upon crossing from one layer to the other have been systematically built into a single partial differential equation governing the space–time variation of the excess pore pressure in the entire composite medium, by the use of the Heaviside distribution. Despite the presence of the discontinuities in the coefficients of the differential equation, a closed‐form solution in the sense of an infinite generalized Fourier series is obtained, in addition to which is the development of a Green's function for the differential problem. The eigenfunctions of the composite medium are the coordinate functions of the series, obtained computationally through the application of the extended equations of Galerkin. The analysis has been illustrated by solving the consolidation problem of a four‐layer composite, and the results obtained agree very well with the results obtained by previous researchers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
994.
A procedure combining the Soil Conservation Service‐Curve Number (SCS‐CN) method and the Green–Ampt (GA) infiltration equation was recently developed to overcome some of the drawbacks of the classic SCS‐CN approach when estimating the volume of surface runoff at a sub‐daily time resolution. The rationale of this mixed procedure, named Curve Number for Green–Ampt (CN4GA), is to use the GA infiltration model to distribute the total volume of the net hyetograph (rainfall excess) provided by the SCS‐CN method over time. The initial abstraction and the total volume of rainfall given by the SCS‐CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation. In this paper, a sensitivity analysis of the mixed CN4GA parameters is presented with the aim to identify conditions where the mixed procedure can be effectively used within the Prediction in Ungauged Basin perspective. The effects exerted by changes in selected input parameters on the outputs are evaluated using rectangular and triangular synthetic hyetographs as well as 100 maximum annual storms selected from synthetic rainfall time series. When applied to extreme precipitation events, which are characterized by predominant peaks of rainfall, the CN4GA appears to be rather insensitive to the input hydraulic parameters of the soil, which is an interesting feature of the CN4GA approach and makes it an ideal candidate for the rainfall excess estimation at sub‐daily temporal resolution at ungauged sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
995.
We derive the governing equations for the dynamic response of unsaturated poroelastic solids at finite strain. We obtain simplified governing equations from the complete coupled formulation by neglecting the material time derivative of the relative velocities and the advection terms of the pore fluids relative to the solid skeleton, leading to a so‐called us ? pw ? pa formulation. We impose the weak forms of the momentum and mass balance equations at the current configuration and implement the framework numerically using a mixed finite element formulation. We verify the proposed method through comparison with analytical solutions and experiments of quasi‐static processes. We use a neo‐Hookean hyperelastic constitutive model for the solid matrix and demonstrate, through numerical examples, the impact of large deformation on the dynamic response of unsaturated poroelastic solids under a variety of loading conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
996.
Quadrature-based approach for the efficient evaluation of surge hazard   总被引:3,自引:0,他引:3  
The Joint Probability Method (JPM) has been used for hurricane surge frequency analysis for over three decades, and remains the method of choice owing to the limitations of more direct historical methods. However, use of the JPM approach in conjunction with the modern generation of complex high-resolution numerical models (used to describe winds, waves, and surge) has become highly inefficient, owing to the large number of costly storm simulations that are typically required. This paper describes a new approach to the selection of the storm simulation set that permits reduction of the JPM computational effort by about an order of magnitude (compared to a more conventional approach) while maintaining good accuracy. The method uses an integration scheme called Bayesian or Gaussian-process quadrature (together with conventional integration methods) to evaluate the multi-dimensional joint probability integral over the space of storm parameters (pressure, radius, speed, heading, and any others found to be important) as a weighted summation over a relatively small set of optimally selected nodes (synthetic storms). Examples of an application of the method are shown, drawn from the recent post-Katrina study of coastal Mississippi.  相似文献   
997.
Sediment at the sediment‐water interface of natural and man‐made waterways forms an integral part of the ecosystem because it is affected by a continuous flux of physical, chemical and biological components between the sediment, interstitial water and the overlying water column. Aquatic sediments contain records of past and present urban and rural runoff, chemical discharges and spills. In recent years sediment quality has received increasing attention following identification of the role of sediment as both a sink for pollutants and as a contaminant source with potential impacts on the quality of receiving waters. Research has indicated that the processes leading to remobilization of contaminated sediments in upstream reaches of a waterway may, through time, exert a significant influence on water quality in the downstream reaches. This, together with the cumulative effects due to contaminant input from point and non‐point source discharges, have dramatic effects on water quality and thus on ecosystem structure and functioning.

The problems associated with elevated concentrations of many hazardous organic and inorganic compounds have resulted in the establishment of aquatic sediment quality criteria and management guidelines in many overseas countries, with the objectives being the reduction and elimination of adverse environmental effects and human health risks associated with contaminated sediments. Whereas more than 70% of the Australian population is clustered around the coastal waterways, little is known about the role of sediments as a repository of environmental pollutants and/or as a source of adverse impacts on water quality and the health of our rivers. The paucity of knowledge on the quality of aquatic sediment highlights the need for the development of coherent guidelines for sediment quality assessment and management of contaminated sites, which are consistent with Australian environmental conditions and land use features.

A comparative evaluation of sediment quality information from eight coastal rivers along the east coast of Australia, presented in this paper, indicates the possibility for establishing a framework for regional sediment quality assessment. This may be achievable by using textural and compositional attributes of bottom sediments in depositional areas to develop databases on the loading and concentration trends of nutrients and contaminants. Regional variability in sediment quality determinants are shown to reflect the influence of catchment hydrology, lithology and land use on nutrient and contaminant concentration trends. Locally, the loading and partitioning behaviour of sediment‐bound contaminants is largely controlled by the nature and the extent of interactions occurring at the sediment‐water interface within individual depositional units.

The concept of ‘Sediment Effect Zone’ is introduced to provide a compartmental approach to the characterization of aquatic sediments and depositional environments in different hydrologic zones. This approach offers a rational basis for follow‐up chemical and biological assessments to establish sediment quality standards and management guidelines. Because of the complex influences of environmental, methodological and statistical factors on defining the sediment variability, the need for implementing proper quality control measures from early stages of design of a sediment quality assessment program is highlighted.  相似文献   
998.
A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses. In the finite element model, the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method, and the dynamical interaction between both crack faces is modeled using a contact-impact theory. In the simulations, the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis, especially, the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail. Meanwhile, the related ultrasonic infrared images are also obtained experimentally, and the theoretical simulation results are in agreement with that of the experiments. The results show that, by using the theoretical method, a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained.  相似文献   
999.
The Analytic Element Method (AEM) provides a convenient tool for groundwater flow analysis in unbounded continuous domains. The AEM is based on the superposition of analytic functions, known as elements, useful at both regional and local scales. In this study, analytic elements for strip aquifers are presented. Such aquifers occur in riverine or coastal deposits and in outcrop zones of confined aquifers. Local flow field is modelled indirectly, using a reference plane related to the aquifer domain through the Schwarz‐Christoffel transform. The regional flow is obtained as a solution of the one‐dimensional flow equation. The proposed methodology was tested by modelling two hypothetical situations, which were compared to exact solutions. It is shown that regional boundaries can be reproduced exactly while local fields are adequately reproduced with analytic elements. The developed elements are applied to simulate a real flow field in northeastern Brazil showing good agreement with measured water levels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1000.
介绍了我国奇石观赏的起源和发展进程 ,对我国石文化传统和各发展阶段的石文化特点进行了探讨  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号